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Isothermal Maxwell demon as a quantum ‘‘sewing machine’’

V. Čápek*
Institute of Physics of Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague 2, Czech Repu

~Received 2 April 1997; revised manuscript received 18 July 1997!

A model of an open microscopic quantum system interacting with an isothermal bath and able to bind
actively particles from a reservoir to their even excited bound states at the cost of the bath energy is presented.
The binding~potentially important in, e.g., chain reactions—hence ‘‘sewing’’! is due to dynamic processes in
a central part of the system accompanying the particle transfer. The outcome thus challenges the second law of
thermodynamics.@S1063-651X~98!00304-3#

PACS number~s!: 05.30.2d, 82.20.Mj, 82.40.2g
ica
io
le
in
um

r

o

m
;
s
fe

ir

se

astic
own

n
it to

me

be

both
l-
at

at
f a
ar-

voir

n
out
in

ral

ol-

ge
e a
e-

er-
tial
For

ke,
to
the

tly
I. INTRODUCTION

In an attempt to model some vital processes in biolog
cells, we have found a model exhibiting a strange behav
Before mentioning the physical motivation in more detail,
us start with introducing the model formally. As is usual
the nonequilibrium statistical mechanics, the quant
Hamiltonian can be split as

H5HS1HB1HS2B . ~1!

Here we choose the HamiltonianHS of the system unde
consideration as a sum

HS5Hcen sys1Hpart1Hcs part. ~2!

Hcen sysdescribes a central system~molecule!, which we as-
sume to have just two eigenstatesuu& and ud& with energies
6e/2. Thus

Hcen sys5
e

2
@ uu&^uu2ud&^du#. ~3!

As for the particle Hamiltonian, we assume two types
particles with creation~annihilation! operatorscm

† and gm
†

~cm andgm!. The c operators commute withg operators as
usual. As for the~anti!commutationalc vs c or g vs g rela-
tions, however, these will be unimportant as we shall assu
only onec and oneg particle for the sake of simplicity here
assuming the above creation and annihilation operator
both types to be of the Fermi or Bose type makes no dif
ence. Though generalization to greater particle reservoirs~as
well as a greater number of particles! is straightforward, we
shall for simplicity deal here just with a particle reservo
consisting of only two sites~labeled 1 and 2!. So we have

Hpart5J~g1
†g21g2

†g11c1
†c21c2

†c1!

1V~c1
†c1g1

†g11c2
†c2g2

†g2!. ~4!

We shall always assume thec-g interactionV.0 ~though
practically all the formulas apply also to the opposite ca
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the reason is that there is perhaps no doubt that the inel
scattering on the central system can bring the particles d
in energy, i.e., to their bound state atV,0, even at very low
temperatures!. As for the interaction Hamiltonian betwee
the central system and reservoir of particles, we assume
consist of two terms, i.e.,

Hcs part5Hcs part8 1Hcs part9 ,
~5!

Hcs part8 5e@ ud&^du2uu&^uu#c0
†c0g0

†g0 .

In connection with that, one should mention that we assu
our model to contain also the third site~labeled 0, with cre-
ation operators of particlesc0

† and g0
†!, which we do not

ascribe, however, to the particle reservoir but assume it to
tightly connected with the central system. The formHcs part8
is chosen in such a way that whenever the site 0 accepts
onec and oneg particle, the central system with the Hami
tonianHcen sys1Hcs part8 becomes unstable in the sense th
the statesuu& and ud& having originally eigenenergies6e/2
acquire energies7e/2. ~We shall always assume below th
e.0.! In reality, this may easily happen as a change o
stable molecular configuration upon accepting a pair of p
ticles. As for theHcs part9 term in Eq.~5! ~part of the inter-
action between the central system and particle reser
transferring the particles between them!, it will be specified
below.

At this point, we should not only explain our motivatio
and physical ideas but we could also say something ab
possible applications of the systems of the above type
nature. The first point is the above instability of the cent
system upon accepting thec-g pair to our site 0. In the world
of macromolecules, we know such examples when the m
ecules change their topology upon accepting~getting bound
with! additional ions, molecular groups, etc. In the langua
of, e.g., biology, site 0 would in such a case designat
receptor~s! for the species in question. Our idea hidden b
yond our Hamiltonian is twofold.

~i! The change in the topology could bring thec-g pair
together, forcing the particles to form a bound state by ov
coming the contingent potential barrier or even the poten
step due to, e.g., repulsive forces between the particles.
instance, the central molecule, being originally, e.g., rodli
could bend or screw upon accepting the pair. For this
happen irrespective of, e.g., the repulsive forces between
g and c particles, the central molecule must be sufficien
stiff in its ~tendency to the! new topology. In other words,e
3846 © 1998 The American Physical Society
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57 3847ISOTHERMAL MAXWELL DEMON AS A QUANTUM . . .
should exceed the potential step as well as the barrier ab
@compare, e.g., Eq.~22! below#. This is the reasoning tha
formed the original motivation of the present work.

~ii ! Such a process seems to require, however, a co
sponding portion of energy. Though one could postpone
discussion of this point, it is preferable to discuss this imp
tant point here so as not to lose the trust of the reader. If
simply take the lacking energy from the bath, the proc
would become energy activated as a bath-assisted pro
This would make it ineffective except at very high tempe
tures when all the states of the system would become, at
times, more or less equally populated. This would make
problem uninteresting. However, in the microworld go
erned by laws of strict quantum dynamics, processes are
lowed that seemingly contradict the energy conservation l
Tunneling is one such example, but this is not our situat
here. We rather have in mind the fact that localization of a
particle may increase, due to the quantum uncertainty r
tions, its kinetic energyT, i.e., also the total energyE5T
1U. As a textbook example, one can take the zero-po
energy in, e.g., the quantum oscillator. The latter energy
above the minimum of the potential and the wave funct
has a Gaussian form around the potential-energy minim
This is so because further localization of the particle at
potential-energy minimum would still lower the mean pote
tial energy, but it would also appreciably increase the m
kinetic, i.e., also the total energy, which should on the ot
hand, be minimal in the ground state of the system. Hen
as long as there are terms in the HamiltonianHS allowing
delocalization~these terms will in our case be provided b
Hcs part9 to be specified below!, the eigenstates ofHS ~in any
finite system as in our case! will certainly, also according to
the variational principle of the quantum mechanics, be
least partially delocalized. Thus, if we compile the eige
states into a time-dependent solution of the Schro¨dinger
equation for the particles in the isolated syste
i\duC(t)&/dt5HSuC(t)& and if we initially put our par-
ticles outside site 0, we get from the solution that with
nonzero probability, they will definitely appear later~sepa-
rately as well as simultaneously! at site 0 too. This is a
purely quantum process that may bring both thec and theg
particles to site 0, irrespective of how much site energy
costs. Notice that for this process, no energy from the re
voir ~bath! is needed as the bath was completely split off
the above Schro¨dinger equation. The bath energy and t
very interaction with the bath enters the process only at
moment of turning it from the virtual-type to the real-typ
process as discussed below. This change of the charact
the process after bringing both particles to site 0 with
requiring the bath energy will be connected with the abo
instability of the central system upon accepting both thec
and theg particle@see the form ofHcs part8 and the discussion
following Eq. ~5!# and the form ofHcs part9 to be introduced
below. We have in mind the dynamic closing of bac
reaction channels~forbidding the particles to leave site
individually in the same way as they arrived there! once the
central system reorganizes on account of the above inst
ity. So, not the above bringing the particles to site 0 but
ensuing ‘‘closing the gate behind them’’ and opening o
new reaction channel for the particles to proceed in th
bound state requires the interaction~i.e., the energy ex-
ve
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change! with the bath. As also argued below, however,
activation energy is needed for this closing and opening
reaction channels as these are~as reorganization processe
owing to the central system instability! mostly spontaneous
~down-in-energy! processes with respect to the bath.

These two points mentioned immediately suggest the k
of processes to which our system may lead: Our syst
working as a real molecular machine, could serve as an
tive catalyst of reactions that would otherwise be complet
impossible. By the word ‘‘active’’ we mean a catalytic prop
erty that is not reducible to just lowering the potential bar
ers. We mean an active collecting of the thermal energy~if
needed or at least borrowing it for a while for virtual pr
cesses! from the bath in order to make some specified, e
endothermic reactions~binding particles in our case! even
possible. In order to convince the reader that such syst
could really exist and work, we should continue with th
construction of our Hamiltonian.

For simplicity, we shall always assume the 1↔2 symme-
try of our Hamiltonian. That is why we can limit our consid
erations to just symmetric states. The symmetric eigenst
of our particle Hamiltonian and the corresponding eigen
ergies read

uf1&5
1

A[V1AV2116J2] 2116J2

3F @V1AV2116J2#
1

&
~c1

†g1
†1c2

†g2
†!uvac&

14J
1

&
~c1

†g2
†1c2

†g1
†!uvac&G ,

E1
part5

1

2
@V1AV2116J2#,

uf2&5
1

A@V1AV2116J2#2116J2

3F24J
1

&
~c1

†g1
†1c2

†g2
†!uvac&

1@V1AV2116J2#
1

&
~c1

†g2
†1c2

†g1
†!uvac&G ,

E2
part52

8J2

V1AV2116J2
,

uf3&5
1

&
@c1

†1c2
†#g0

†uvac&,

uf4&5
1

&
@g1

†1g2
†#c0

†uvac&,

E3
part5E4

part5J,

uf5&5c0
†g0

†uvac&,

E5
part50. ~6!
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Thus, ignoring the antisymmetric states,Hpart can be rewrit-
ten as

Hpart5(
i 51

5

uf i&Ei
part^f i u. ~7!

With that, we can now rewriteHcs part8 as

Hcs part8 5e@ ud&^du2uu&^uu# ^ uf5&^f5u ~8!

and specifyHcs part9 as

Hcs part9 5P~@ uf2&1uf5&] @^f3u1^f4u#1H.c.! ^ ud&^du

1Q~ uf5&^f1u1H.c.! ^ uu&^uu. ~9!

~Here H.c. means the Hermitian conjugate.! In words, we
assume that the central system allows different types of
ticle transitions~channels of the particle scattering! in differ-
ent physical configurations. The detailed form of Eq.~9! is
chosen in our model in the simplest version yielding t
desired effect.

With that, we have already specified the Hamiltonian
our system in the form required above. As for the thermo
namic bath, its detailed form is~except that it cannot be
dispersionless! in fact unimportant. We only need that, i
connection with the system-bath coupling, it yields the d
sired and sufficiently fast transitions among different sta
of the central system. The simplest version is that of non
teracting bosons~e.g., phonons!

HB5(
k

\vkbk
†bk . ~10!

Here\vk are energies of the bath excitations andbk
† (bk) is

the corresponding creation~annihilation! operator, which we
assume to be bosonlike. The same applies to the system
interaction. Its simplest form causing relaxation betwe
states of the central system can be chosen as

HS2B5
1

AN
(

k
\vk~bk1b2k

† !$Gk@ uu&^du1ud&^uu#

1gkuf5&^f5u%. ~11!

HereN andGk are the number of bath modes~numerated by
index k taken as a wave vector here! and set of interaction
constants. In the thermodynamic limit of the bath,N tends to
infinity and the sums (1/N)(k¯ turn to the usual integrals
As Eq. ~11! allows uu&↔ud& relaxation, our problem can b
viewed also as a slow combined particle scattering on a c
tral system with relaxation between its~and special type of
instability of the! intermediate states. Special attenti
should also be devoted to the term in Eq.~11! that is propor-
tional togk . This term is the simplest one causing~in reality
very strong! transversal relaxation~dephasing! processes. In
order to understand the important role of the dephasing,
should realize that with Eq.~6!, one can easily diagonaliz
the whole Hamiltonian of the systemHS @Eq. ~2!#. If the
dephasing~transversal relaxation! were fully omitted, one
would get transitions among the corresponding eigenstate
HS as the only effect of the coupling to the bath. This is t
r-
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-
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way submitted by the weak-coupling~second order inHS2B!
theories yielding a transition to the canonical state. T
means relaxation to practically the ground state at l
enough temperatures. The ground state ofHS , however, is
not the desired asymptotic state here. It contains compon
with our particles outside site 0 as well as at this site, w
definite phase relations among these components. Thes
lations are due toHcs part9 in Eq. ~9!, which must be taken, in
the weak coupling~to the bath! theories, as dominating ove
HS2B in Eq. ~11!. In our model, however, we assume th
opposite relation between the roles ofHcs part9 and HS2B .
This means that higher orders inHS2B also become effec-
tive, which causes, in addition to transitions, also the tra
versal relaxation. Physically, the meaning of the sufficien
strong transversal relaxation~dephasing! consists in destroy-
ing the above tough phase relations among individual co
ponents of the eigenstates ofHS , i.e., turning the above tran
sitions to those that are between the two eigenstatesuu& and
ud& of Eq. ~3! ~instead of those among eigenstates ofHS! as
already suggested by the form of the first term in Eq.~11!
proportional toGk . As already mentioned, such a dephasi
would be provided already by higher-order terms inGk , in
particular when these coupling constants~i.e., the whole
HS2B! are sufficiently strong. In order to see this effect e
plicitly, one would need, however, a detailed higher-ord
theory, while the term proportional togk in Eq. ~11! yields
such dephasing processes immediately. Technically, the
portance of such terms inHS2B in Eq. ~11! proportional to
gk becomes clear, realizing that with such a dephasing,
memory functions to be invoked below become mo
strongly decaying functions of time, i.e., their time integra
become better convergent. From the point of the energy c
servation law, the importance of these terms becomes c
from the observation that our asymptotic state of the sys
~to be obtained below! lies in energy well above the groun
state ofHS . Thus, in order to make our process of the act
binding of our particles really effective, we need an inten
energy exchange with the bath~which is the only source of
energy at our disposal for our endothermic process inve
gated!. This means a strong absorption as well as emissio
boson excitations in our bath. These processes are effect
provided by, in particular, the second term inHS2B in Eq.
~11! proportional togk .

Before going to the solution of the dynamic problem co
nected with the above Hamiltonian, let us briefly mention t
problem of the order of energies of the Hamiltonian of t
systemHS . This is a very important question in connectio
with the weak-coupling~in HS2B! kinetic theories. In such
approaches, the relaxation certainly goes mostly~and at low
temperatures exclusively! to the ground state ofHS . Our
theory here, however, is definitely not the weak-coupli
theory of such a type. Rather than the strength of the syst
bath coupling, the parametersP andQ in Hcs part9 in Eq. ~9!
play the role of the small parameters, though no real exp
sion in powers ofP andQ is used.~As for the real regime
assumed see below.! Anyway, it is worth mentioning, as we
will argue below, thatuf1& ^ ud& is actually the asymptotic
state of the system~i.e., the particle bound stateuf1& is prac-
tically the asymptotic state of the particles!. This state is one
of the eigenstates ofHS at P5Q50 and remains approxi
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mately so at low~but still finite! values ofP andQ. In this
connection, one should realize that the corresponding
ticle energyE1 is appreciably above all other particle ene
giesEi , i 52, . . . ,5 in Eq.~6! wheneverV@uJu.0. In con-
nection with the solution presented below, this is what
contend makes our model so challenging.

II. SOLUTION

We assume the notation for states of our systemu im&
5uf i& ^ um&, i 51, . . . ,5,m5u or d. Then for probabilities
Pim(t) of finding, at timet, our system~central system plus
particles! in state u im&, one can write Nakajima-Zwanzig
generalized master equations@1,2# with the Peier type of
projectorP @3# as

d

dt
Pim~ t !5 (

jn ~Þ im!
E

0

t

@wim, jn~t!Pjn~ t2t!

2wjn,im~t!Pim~ t2t!#dt. ~12!

We have already omitted the initial condition term as a c
sequence of special initial conditions assumed@2,3#, namely,

r tot~0!5u2m&^2mu3rB, m5u or d, ~13!

provided the initial density matrix of the bathrB

5exp(2bHB)/TrBexp(2bHB) is used in the projectorP @3#.
This introduces the initial bath temperatureT51/kBb into
the memory functions

wim, jn~t!52 (
m,n,l

@Le2 i ~12P!Lt

3~12P!L# imm,imm, jnn, jnlrnl
B ~14!

~see@3#!. ~Here the summation over greek indices is that o
over states of the bath;L is the Liouville superoperator an
the algebra of four-index matrices is introduced as usual@2–
4#.! For other initial conditions, one may argue that the init
condition~inhomogeneous! term in Eq.~12! decays fast with
increasing time.

We shall not try to calculate our memory functions~14!
exactly. Going even beyond the lowest order of the per
bation theory provides here a difficult task. Instead, we s
only argue that@as seen from a comparison of differe
memory functions and corresponding matrix elements of
particular,Hcs part9 in Eq. ~9!#

w2d,3d~ t !5w2d,4d~ t !, w3d,2d~ t !5w4d,2d~ t !,

w3d,5d~ t !524d,5d~ t !, w5d,3d~ t !5w5d,4d~ t !,

wjd, ju~ t !5w5u,5d~ t !, j 51, . . . ,4

wju, jd~ t !5w5d,5u~ t !, j 51, . . . ,4. ~15!

Except forw1u,5u(t) andw5u,1u(t), other memory functions
turn to zero in the lowest order inHS2B1Hcs part9 ~part of
the total Hamiltonian causing transitions! and for simplicity
shall be fully disregarded as unimportant here. A detai
analysis of nonzero higher-order memory functions that
zero in the second order shows that a sufficient justifica
r-

e

-

e

l

r-
ll

n

d
e
n

for that at, e.g., low and intermediate temperaturesT!e/kB
can be provided by the inequality

uGu2@Q/~e2V!#2!1 ~16!

~hereG is a typical value ofGk!. Let us add only that omis-
sion of the above memory functions that disappear in
second order is in principle not necessary and can
avoided. Here we proceed in this way just for technical si
plicity of the solution and final formulas.

Assume that we work~as indicated! to the above lowest
order but include in a proper way partially higher-ord
terms up to infinity in order to get the decay of memories a
convergent memory integrals*0

1`w...(t)dt ~see, e.g.,@4#!.
The necessity of at least a partial summation to infinity
obtain a decay of the memory functions to zero was stres
by Silbey @5#. One should also mention that our abo
dephasing processes appearing forgkÞ0 are, in addition to
higher-order processes, the main reason for a proper dec
the memory functions. With that, taking the long-time lim
of Eq. ~12! and designating

E
0

1`

w2d,3d~ t !dt5A8, E
0

1`

w3d,2d~ t !dt5A,

E
0

1`

w3d,5d~ t !dt5B8, E
0

1`

w5d,3d~ t !dt5B,

E
0

1`

w1u,5u~ t !dt5C8, E
0

1`

w5u,1u~ t !dt5C,

E
0

1`

w1u,1d~ t !dt5G↑[
2p

\

1

N (
k

uGku2~\vk!
2

3d~e2\vk!nB~\vk!1O~ uGu4!,

E
0

1`

w1d,1u~ t !dt5G↓[
2p

\

1

N (
k

uGku2~\vk!
2d~e2\vk!

3@11nB~\vk!#1O~ uGu4!, ~17!

we obtain from Eq.~12!

05SA B
C DD 1

P1u~1`!

P1d~1`!

P2u~1`!

P2d~1`!

P3u~1`!

P3d~1`!

P4u~1`!

P4d~1`!

P5u~1`!

P5d~1`!

2 50. ~18!
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@In the explicit formulas forG↑ andG↓ , we have for a while
setgk50. With gk nonzero, thed functionsd(e6\vk) en-
suring the energy conservation would become simply bro
ened.# The 535 blocksA, B, C, andD are given as

A5S 2G↓2C G↑ 0 0 0

G↓ 2G↑ 0 0 0

0 0 2G↓ G↑ 0

0 0 G↓ 2G↑22A 0

0 0 0 0 2G↓

D ,
a

to
i-
d-
B5S 0 0 0 C8 0

0 0 0 0 0

0 0 0 0 0

A8 0 A8 0 0

G↑ 0 0 0 0

D ,

C5S 0 0 0 A G↓

0 0 0 0 0

0 0 0 A 0

C 0 0 0 0

0 0 0 0 0

D ,
D5S 2G↑2A82B 0 0 0 B8

0 2G↓ G↑ 0 0

0 G↓ 2G↑2A82B 0 B8

0 0 0 2G↑2C8 G↓

B 0 B G↑ 2G↓22B8

D . ~19!
ns
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ns

ese
s

de-

ath
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-
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e

Clearly, the lowest~in uGu2! order terms inG↓ and G↑
represent the standard golden-rule results for the down-
up-relaxation rates of the central system. AtkBT!e, it is
easy to see that

G↑
G↓

'e2be. ~20!

All that makes it easy to find and interpret the solution
Eq. ~18! as well as the long-time limit of normalizing cond
tion ( j ,mPjm(t)51. The solution reads

P1d~1`!5F11
G↑
G↓

S 11
C

C8D1S G↑
G↓

D 2 C

C8 S 112
B8

B

1
A8B8

AB D1S G↑
G↓

D 3 B8C

BC8 S 21
A8

A D G21

,

P1u~1`!5
C8

C
P5u~1`!5

G↑
G↓

P1d~1`!,

ABC8

A8B8C
P2d~1`!5

BC8

B8C
P3d~1`!5

BC8

B8C
P4d~1`!

5
C8

C
P5d~1`!5S G↑

G↓
D 2

P1d~1`!,

A

A8
P2u~1`!5P3u~1`!5P4u~1`!

5
B8C

BC8 S G↑
G↓

D 3

P1d~1`!. ~21!
nd
~In the case that the time integrals of the memory functio
turn to zero, the ratios of the corresponding integr
should be understood here as, e.g.,C8/C
[ lim«→01*0

1`w1u,5ue2«tdt/*0
1`w5u,1ue2«tdt.!

Now let us assume that we deal in general with transitio
between states that are not eigenstates ofHS . That means
that there are nonzero transfer integrals connecting th
states inHS . Then proper inclusion of higher-order term
~again summed up partially to the infinite order! is under
some approximations able to reintroduce the standard
tailed balance conditions~DBCs! for ratios of back and forth
transition rates. For at least site-local coupling to the b
where sufficiently reliable higher-order formulas exist, the
approximations mean, however, neglecting transfer integ
as compared to typical differencesDe of site energies and
assuming a high-temperature domain withkBT@De @6#. Let
us recall that DBCs also provide a cornerstone of the low
order Pauli master~PME! theory. One should mention, how
ever, the following.

~i! The standard derivation of DBCs as in the PME
based on the analysis of bath-assisted transfer rates~owing to
site nonlocal coupling to the bath! between true eigenstate
of the Hamiltonian of the system. This is the case of ratesG↑
andG↓ provided we can~upon their calculation, as we als
did above! neglect coupling of the relevant sites to other si
not involved in the transitions~i.e., to set thereP5Q50!.
No wonder then that also Eq.~20! represent nothing but the
DBCs.

~ii ! This, however, is not our situation here with the tran
fer ratesA, A8, B, B8, C, and C8; these transfer rates a
defined in Eq.~17! are nonzero just forPÞ0ÞQ. The point
is that they represent transfer rates between states that ar
eigenstates of the Hamiltonian of the system~they become so
just in the limit P,Q→0 when, on the other hand, thes
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transfer rates turn to zero!. Then the corresponding DBCs a
at most very approximate and definitely break down in
low-temperature domain. In the high-temperature domain
the other hand, even DBCs lead to an almost-temperat
insensitive ratio of the back and forth transition rates.

The invalidity of DBCs for transfer rates between sta
that are not eigenstates ofHS may be most easily seen on
e.g., a dimer with a nonzero transfer integral. The mix
property of the latter means that even in the ground s
~i.e., equilibrium at zero temperature!, the particle is distrib-
uted on both sites involved. Simple balance equations t
give that as long as any transfer rate between sites is
zero, both rates must be nonzero. The reader is referred t@6#
for detailed formulas or to, e.g.,@7# for a detailed form of
such wave functions in a simple model. With that, we c
now easily discuss our solution~21!.

Let us for concreteness specify our reasoning to, e.g.,
regime

kBT!e, 0,P,Q&V!e. ~22!

Thus, for the transfer rates 3d↔5d and 4d↔5d as well as
5u↔1u, we definitely have the low-temperature regime f
the ratiosB8/B and C/C8. Hence both of them should b
taken as temperature insensitive. As for theA8/A ratio, its
temperature dependence should only be weak as the c
sponding transitions are not induced by the bath. Con
quently, taking@together with Eq.~20!#

A8

A
'const,

B8

B
5const,

C

C8
5const ~23!

~instead ofB8/B'ebe and C/C8'eb(e1V) as it would fol-
low from the naive and unjustified application of DBCs!, we
get from Eq.~21! that with an exponential error~proportional
to e2be!,

P1d~1`!'1 ~24!

with all other asymptotic probabilities being practically zer
Thus the particles become, owing to the action of our cen
system, coupled~in a bound state! with the latter system
prepared to start the action on another pair~if any; this is of
course beyond our model here working with just onec and
one g particle!. Combined with the above explanations
connection with the HamiltonianHS @see Eqs.~2!–~5! and
the ensuing text there#, it yields the following picture of the
process investigated.

~i! By the mechanism mentioned above, the unbounc
and g particles can appear simultaneously at site 0 join
with the central system.

~ii ! This leads to the instability of the central system lea
ing to, e.g., the change of topology of the latter.~Already this
may bring the particles together, i.e., may lead to a forma
of their bound state.!

~iii ! Because of the new topology~and as assumed in ou
Hamiltonian!, the particles can then leave site 0 just as
bound pair.

~iv! Once it happens, the central system again beco
unstable, returns to its original topology, and waits for a
otherc-g pair to be bound.
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~More details about the above types of activity of t
central part of the system can be found in@8#, where a less
advanced model of this type was discussed. As for a sim
version of the model transferring single particles only, s
also @9,10#.! All that is why the present system in particula
could play the role of a quantum microscopic ‘‘sewing m
chine’’ in especially chain processes~reactions!. Let us keep
in mind that our asymptotic state does not differ from t
usual equilibrium state due to some lacking transitions fr
excited states to the equilibrium one. This may be verified
complementing the model by any transitions possible. N
can any type of energy renormalization~shifting contingently
our asymptotic state sufficiently down in energy and th
reconciling the result with the standard statistical thermo
namics! be found. The difference is really because of t
active role of the central system, which is because o
proper combination of its two properties:~i! The instability
of the intermediate state of the central system~scatterer! dur-
ing the transition~scattering of the pair! and ~ii ! the strong
dependence, owing to the matrix elements involved, of
scattering channels on the state of the central system.
simple result contradicting the usual~of course macroscopic!
thermodynamics means an up-in-energy transition at the
of the thermal energy of the thermodynamic bath. Thus
model and process described reminds us of the Maxwell
mon @11,12# working here, however, in isothermal cond
tions. Splitting the central system from the bath immediat
interrupts the process.

III. CONCLUSION

Let us define the intelligent system~machine! as a system
that is able to check, at any moment, whether previous s
~particle transfers, etc.! have really been performed and
decide, on grounds of this check, about the next steps to
performed. Then we can see that our system is a mode
such an intelligent molecular open system working on
particles from the particle reservoir and governed~together
with the bath! by the linear Liouville equation. The resultin
particle binding~self-organization! at the cost of the therma
energy of the reservoir and going thus against the stand
second law of thermodynamics is then a result of the ch
whether both thec- and theg-type particle appeared simu
taneously at site 0 and of an immediate response of the
tral system to the positive result of the check. This type
self-organization has nothing to do with persistent exter
flows as in standard self-organization theories.
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@8# V. Čápek, J. Phys. A30, 5245~1997!.
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